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ABSTRACT

The behavior of Compact Free Electron Lasers is analyzed from a analytical

and numerical point of view. The operating principles of the Compact FEL are

reviewed with specific reference to electron dynamics, the gain mechanism,

evolution of the optical field, and the generation of harmonics. Size and complexity

of FEL systems can be substantially reduced by using micro-undulators that

employ harmonics to reach optical wavelengths with low electron beam energy.

The use of harmonics at short wavelengths improves the undulator design with

longer periods that would be easier to fabricate. Numerical computer codes

describing FEL physics are utilized to explore the advantages of using harmonics.

Five methods that model various combinations of FEL physical effects with

different levels of sophistication are used to obtain results of gain calculations. The

plots show gain degradation due to energy spread and strong field saturation

effects. An analysis of beam quality is used to arrive at new electron beam size

limits that simplify gain analysis for all undulator designs.
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I. INTRODUCTION

The free electron laser (FEL) is an adaptable source of coherent radiation

that can operate at high power and has many potential applications in scientific

research, industry, national defense and medicine. The FEL uses a high quality

relativistic electron beam made to oscillate by passing through a periodic

magnetic field to amplify coherent optical radiation [Ref. 1]. The basic FEL

configuration (Figure 1) consists of an electron accelerator that injects a high-

quality electron beam into the transverse periodic magnetic field called an

"undulator." In the undulator, the interaction between the beam and the co-

propagating radiation takes place. The electrons are the power source in the

FEL, and can provide more than a gigawatt of peak power with an average

power ranging from kilowatts to ten megawatts. The FEL converts the electron

beam kinetic energy to electromagnetic radiation, and can be made to operate

as an amplifier, or as an oscillator. In the first case, a high-current beam

amplifies a low-power optical wave during a single pass through the interaction

region without a need for a optical feedback system. In the second case, mirrors

placed beyond each end of the undulator form a resonator, or optical cavity. In

this cavity, radiation is reflected between the mirrors. Oscillating electrons are

injected into the cavity to overlap the rebounding optical pulse. The laser field



grows on each pass, and becomes eventually large. In both cases, it is critical

that the electrons spatially overlap the optical mode for energy exchange to

occur between the electron beam and the electric field of the light wave [Refs.

2,3].

beam dump, or reoccelerotor
Electro beam

lectron Acceleratoroto

-- + radiation
Mirror Mirror leaves

Resonator

Figure 1. Schematic of the Interacting Elements of the FEL Oscillator.
Successive electron pulses enter and propagate through the transverse
periodic magnetic field set up by the undulator. The superimposed
rebounding coherent optical wave is amplified by the electron beam energy
exchange.

The basic physics of the FEL is analyzed theoretically by solving the

relativistic electron particle dynamics, and coupling the solutions to Maxwell's

optical wave equation [Ref. 4,5]. The three interacting elements of a high-quality

relativistic electron beam, undulator-magnetic field that causes electrons to

wiggle, and resonant optical cavity to provide feedback, combine to produce light

at wavelengths that range from the microwave to the ultraviolet. The forward

propagating electromagnetic wave and a transverse magnetic field, whose
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electric and magnetic fields are perpendicular to the direction of propagation,

give rise to an axial force that can extract energy from the electron beam.

The basic mechanism of the coherent energy exchange is the bunching of

the electrons at optical wavelengths. The electrons leaving the accelerator are

randomly positioned over many optical wavelengths. There are typically

approximately 107 electrons, or more, in each section of the electron beam one

optical wavelength of light long. As the light and electrons interact at the

beginning of the undulator, some electrons gain energy and some lose energy.

Those that gain energy move a little faster longitudinally and those that lose

energy move a little slower; this eventually creates a bunch in each optical

wavelength. See Figure 2. The bunching process, or localized spatial

positioning of the electrons within a optical wave!ength, is responsible for

coherent radiation at the end of the undulator and creates the feedback process

[Ref. 5].

As a consequence of the non-linear properties of the gain mechanism,

higher harmonics of electromagnetic waves can be generated in FEL oscillators

and amplifiers [Ref. 6,7]. The generation of harmonics in FEL can be used to

reach optical wavlengths with moderate to low electron beam energy. This work

discusses the advantages of using harmonics and contributes to the

development of compact FELs where size and complexity can be substantially

reduced. The compact FEL would use a micro-undulator with a length in the

3



I Optical Wavelength
_ __ Bunch of Electrons

Electrons Spatially //

Positioned 9 ,i

Beginning of Undulotor End of Undulotor

Figure 2. Bunching Process of Electrons In the FEL
Some of the electrons gain energy and some lose energy within one optical
wavelength as they travel through the undulator. The electrons spatially
overlap due to their different energies and cause amplification of light at the
end of the undulator.

range of ten centimeters. The compact FEL would subsequently be made

availabe to a much broader range of users [Ref. 8]. The considerable effort

directed to the development of this device is motivated by the need to reach

short wavelengths in the most inexpensive manner.

In Chapter 11 the development of the mathematics used to model the FEL

interaction and describe the gain mechanism is outlined to provide the necessary

background to understand the basic physics of the FEL. Chapter III discusses

the concept of the compact FEL from the perspective of the accelerator and

micro-undulator components of the FEL system and motivates the realization of

these devices. The evaluation of three micro-undulators operating on harmonics

at an optical wavelength of 0.4 microns are next explored in Chapter IV. An
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analyses of the gain for these FEL systems and a careful discussion of the

dependence on the electron beam quality is done in order to more fully

understand the physics and define new limits on various parameters.

The author's most significant contributions made toward the operational

advancement of a Compact Free Electron Laser are summarized below.

* Micro-undulator operation for proposed compact FEL devices are simulated
to explore the wider use of harmonics in order to reach optical wavelengths
with moderate-to-low electron beam energy.

" Gain degradation due to energy spread and strong field saturn"on effects
are shown to demonstrate the advantages of using harmonics in order to
reduce size and complexity of FEL systems.

" The Compact FEL designs are explored by five methods that model FEL
physics with different levels of sophistication and mathematical formalism.
The merits of predicating gain by each method are identified to establish
their effectiveness to explore new designs.

" The data points on the curves in Figures 15 through 20 represent the result
of several computer simulations that calculate the FEL gain using either a
CRAY computer Sun Workstation, or Personal Computer.

* An analysis of beam quality is used to arrive at new electron beam size
limits that simplify gain analysis for all undulator designs.

5



II. BASIC PHYSICS OF THE FREE ELECTRON LASER

A. DYNAMICS OF ELECTRON TRAJECTORIES

This section contains the derivation of the electron pendulum equation [Ref.

2-6], that calculates the dynamics of individual relativisic electrons as they are

affected by the electric and magnetic fields in the laser cavity. The assumptions,

approximations, and mathematical steps are presented in detail. Each electron's

initial conditions determine the evolution of its velocity and position. This motion

can be represented in periodic pendulum phase-space by a section of phase-

space one optical wavelength long. The particular path each electron takes is

determined by the amplitude of the undulator field and the optical fields. The

physics can be understood by appealing to electron phase-space diagrams that

consider the state of electron motion in the two-dimensional space of position and

velocity. These diagrams will be utilized to study the FEL interaction and provide

a method of evaluating the gain mechanism in the compact designs.

The electron evolution through an operating FEL's periodic undulator in cgs

units, are governed by the Lorentz force equation:

d (ya. ()= ,[p ))
dt mc

where e = magnitude of electron charge,
m = mass of electron,
c = speed of light,

6



c= electron velocity,
= optical magnetic field,

E= optical electric field,
b = ternal magnetic field in undulator,
y dimensionless Lorentz factor = (I - 0 . 0 )-1/2.

The undulator field seen by electrons can have circular polarization where the

electron path in the laboratory frame of reference is helical along the z-axis. An

alternative is an undulator with linear polarization where the electron path is

sinusoidal in the x-z plane. See Figure 3.

A A

x X

z z

A A

Y Y
Electron Path in Helical Electron Path in Linear
Undulator Undulator

Figure 3. Schematics for Perfect Electron Trajectories In Circular and
Unear Polarized Undulators.

The ideal helical undulator field near the z-axis in rectangular coordinates is

R, = I B,, By. Bz I = B [ Cos(kz), sin(koz), 0] (2)

where B = undulator peak magnetic field amplitude,
k, = undulator wave number = 2n/.o,
10 = undulator period,
z = longitudinal position of electron along undulator.

7



It is important to realize that this representation of d. is accurate only near

the z-axis, since away from the axis the transverse f,_ must bend to satisfy

Maxwell's equation, V k = 0.

The electric and magnetic fields of the radiation in the cavity are assume to

be a plane, circularly polarized, monochromatic wave. Both these fields travel

along the z-axis with the electron. The fields are expressed in terms of the optical

peak electric field amplitude and a sinusoidal disturbance:

,=E ( t) [ cosqJ, -sin*J, 0 ](3)

B, = E (t) J sinqp, cosp, 0J

where E(t) = optical peak electric field amplitude,
S= kz- wt + p(t),

k = optical wave number=2n/X,
W = carrier frequency w=kc,
(p(t) = optical phase.

The simplest and most fundamental electromagnetic waves are transverse, plane

waves where E and p are independent of time and space z. The goal of the

calculation is to determine how the details of the electron trajectories in the

undulator are coupled to the light wave in the resonator cavity to produce a large

optical power output.

8



The energy change for the relativistic electron in a radiation field is

dy = -e (5-19) (4)

dt mc

where d (ymc 2)/dt is the rate at which the electron loses or gains energy. An

initial distribution of the electrons and velocities at the entrance of the undulator

maybe chosen so that on the average the electron beam loses energy to the

radiation field in one pass through a finite length of undulator. Figure 2, in the

previous chapter, shows a distribution of electrons on the optical wavelength scale

where an alteration of z-velocities provides coherent bunching at the end of the

undulator to provide amplification of the radiation within the resonator.

The components of the Lorentz force equation and electron energy equation

are

transverse component x-y plane
-(y) E 'E(1 - p,) (os*, -sin*, 0) * IB ( -sin(kz), cos(kz) O)]
dt mc

longitudinal component z-direction
da () = (- ,[E (cos* - PY sin*) B( 0, sin(koz) - Oy cos(kz)] (5b)
dr m

,=- El P, cosq, - P, sin* ]. (6)
mc

For realitivistic electrons, 1,=1, the electric and magnetic optical fields in (5a)

nearly cancel. This implies P1 B > E( 1 - p,) when P z 1 . Therefore, the first term

of the transverse component of the Lorentz force may be neglected for relativistic

9



electrons. The transverse electron velocity is determined almost entirely by the

static magnetic field. This assumption allows the transverse component to be

approximated by

d ()-eB ( -sin( kz ), cos( kz ), 0) (7)

dt ?nc

Exact integration of this equation is allowed if we assume perfect injection of the

electrons. This assumption removes the constants of intergation and leads to the

transverse velocity:

I=K (cos(kz), sin(kz), 0) (8)
Y

where K is the root-mean-square (rms) undulator parameter defined by

eBI 
(9

21m mc2

where B = B , / v is the root-mean-square undulator magnetic field along the z-

axis, and I, is the undulator period. Perfectly injected electrons enter the

undulator exactly on-axis without any random spread in angles or positions, i.e.,

(x,y) = (0,0), where x is the wiggle direction and y the direction of the magnetic field.

The undulator field gives the electron a small but important transverse

"wiggle" velocity 0. The radiation fields alone have no significant effect on the

electron's transverse trajectory, since forces due to E, and B, nearly cancel for

relativistic electrons, y:3l. Since total energy of the wave-particle must be

10



conserved, energy lost by the electron is gained by the light wave passing through

the cavity according to (4). The relative orientation between 0 and 9, is

determined by the electron's initial position, zo within a radiation wavelength, X.

The determination of whether the electron gains or loses energy depends on the

sign of j, in (4). When , is positive, the electron gains energy and radiation is

absorbed. When , is negative, the electron loses energy as the radiation field

grows, causing stimulated emission. The electron transverse velocity (8), and the

electric field 9, = E ( cos*, -sin*, 0) with a z-component can be used to solve the

energy equation for y(t). Substituting into (4), the expressions for E, and P.

yields

j =-S [ E(COS,,-sin,,O)].-K )cos( kz ), sin( koz),O0

Performing the vector dot product operation, and making use of the trigonometric

identity cos( * + kz) = os* cos( kz) - sin* sin( koz) the above equation can be

written as

_= Cos( +p) (10)ymc

where C=(k + ko) z - wt is the electron phase, and koz is the phase of the optical

wave. Differentiating C with respect to z, for any t>O, we see that

A C = ( k + ko) Az. For relativistic electrons P,= 1, the optical wavelength X is much

smaller than the undulator period X,, implying kk,. Therefore, AC kAz

describes the position of electrons on the optical wavelength scale with respect to

11



the combined optical and undulator forces. The actual electron beam initial

conditions can be chosen so that the beam predominantly loses energy to the

radiation field as the electrons travel through a finite length undulator. This gain

mechanism will be discussed in the next section.

A more useful form of (10) can be obtained by relating the electron's energy

to the electron's position in a section of the electron's beam one optical

wavelength long. Equation (8) and the definition of the Lorentz factor in (1) can

be equivalently written as y= 1 -2 -p 2 where pf = K2/y 2. By eliminating

= K3 I/y 2 and solving for I3z2, we have

2 1 K2

PZ y2

Taking the differential of 3z2 with respect to time, ' is related to k by the following

relationship

Y2 P, (12)

Y 1 +K 2

In order to relate j to Z, we must take the differential of = (k , k0 ) z - cot,

the electron phase velocity with respect to time, and solve for 3'. The rate of

change of the electron's velocity in the z-direction is given by 13.. Substituting this

result into (12), we see that

_ ,2 C (13)

Y 1 +K 2  (k +ko)c

Recalling kk o and Pz=l, (13) can be written as

12



Y _ 2 (14)
Y (1 +K 2 )

where =kc.

At resonance, the electron has zero phase velocity v =0 and will pass through

one undulator period as one optical wavelength passes over it. This resonance

condition provides the maximum coupling and energy exchange between the

electron's transverse velocity and the electric field but not necessarily the maximum

transfer of power for the entire beam. See Figure 4.

*K

X0

Light wove

Figure 4. Resonance Condition In the Free Electron Laser.
In order for the work I± E, to be positive the electron must move back an
optical wavelength in transversing one undulator period.

For slow, efficient exchange to occur between the electron beam and the

optical wave the electron phase t must remain close to 0, implying

13



(k + ko)p,c - w = 0 or

koP = k ( 1 - P. (15)

By making use of binomial expansion for y>l, (11) becomes

(1 K)- or (1 - =k 1+PZ= 2 Y 2 2y 2

Substitution of this expression for (1-p3) into (15) yields

The resonance condition in terms of optical and undulator wavelengths for

relativistic electrons, 0,==l, is

1 =.( 1+K2) (17)

Finally by making use of (10), (14), and the resonance condition, the non-

linear pendulum equation describing electron particle dynamics in the FEL takes

on the form:

2eK ( in o S (18)
y2rnc

where o. =kc= 2 I ..

The FEL interaction takes place while the light and electrons travel through

the undulator. In the relativistic limit, the interaction time is close to Lic for both

the light and the electron, where L is the length of the undulator. Define r =ct/L

as the dimensionless interaction time of the electron with the optical field as they

14



travel through the length of the undulator where 0< T <1 The Pendulum equation

takes the form:

d2 = 4nNeKLE Cos( +p) (19)
d 2  y )7mc2

where N is the number of undulator periods.

Let

la 4nNeKLE' 
°  d and v =0 = d "

yfmc a  ' d

then the final equation becomes:

Pendulum Equation
00 dv
C = = jacos( C + ().d-r

The dimensionless optical field amplitude !a gives the strength of the

coupling that occurs between C and v, and determines the electron bunching rate.

For each electron traveling through the undulator, resonance is measured by the

electron phase velocity v. The phase velocity is the difference between the

frequency at which electrons pass over wavelengths of the undulator and

frequency at which wavelengths of light pass over the electrons [Ref. 6]. The

Pendulum equation describes the electron evolution where the initial electron's

phase and phase velocity is defined by C(-=0) = C. and v(t=0) = vo.

B. GAIN MECHANISM FOR THE LOW-CURRENT, LOW-FIELD FEL

A necessary attribute of the compact FEL is the ability to have a sufficient

fractional increase in the optical power per pass through the undulator. This

15



requirement is important so that losses due to the low reflectivity and other optical

resonator losses can be overcome [Ref. 9]. The laser oscillator is designed with

mirrors carefully aligned so that light can bounce back and forth between these

mirrors and have very little loss per bounce. A single pass of the electron beam

is defined as the transport of the beam through the optical cavity from beginning

to end of the undu!ator. If the net amplification between the mirrors, including

scattering losses, exceeds the net reflection loss at the mirrors, the coherent

optical power will build up in the system. A measure of the fractional increase in

the optical power is called the gain G and defined by

G= AP°Pt (20)
P-r

where APopt = change of power along the undulator
Popt = power at beginning of undulator.

The gain can also be expressed as the ratio of the energy lost by the electron

beam to the power required to create the energy lost by the electron beam. It is

assumed that the electrons do not interact with any other medium so that when

the electron beam loses energy, all the energy is transferred to the light wave.

This is critical in the start-up of the FEL where the strength of the optical field is

initially very small. The following discussion highlights the derivation, assumptions

and approximations of the low current-weak field gain formula [Ref. 4,5].

When the optical field is considered weak, aa 7r, there is little change in the

electron phase velocity during the FEL interaction. On the first few passes of light

in the oscillator, the optical field strength e I, starts out very small. When the

16



dimensionless current is small, j 1, there is little change in the optical field

amplitude or phase in a single pass.

The assumptions used in this calculation of gain are:

(1) the FEL is already operating and

(2) the gain is low so that c - small - 0.
00

Using the pendulum equation a a cos( p), Ref. 5 solves for v(T), the

electron phase velocity, by using perturbation theory. This expression is given by

a[sin( vc. ) v sin(C,)]
0O (21)

a - (cos(2 .° 
2 vT) -c os(2C. )) +cos(vjt) -1- v° rsin( ° )cO .s ( .v r) +...

a

where the initial optical field is Ia(o) =ao and o (o) =0.

The net change in energy of the electron beam is defined as " the energy

electrons gain as work is done on them by the radiation field" minus "the energy

electrons lose to the radiation field." A net change in energy of the electron beam

does not occur for the term proportional to ao because just as many electrons lose

energy as gain energy. The higher-order terms proportional to ao2 in (21) will shift

and skew the distribution of electron phase velocities so there can be a net

change in the energy of the beam. To second order in ao , there exists a net

change in the electron energy given by

2

<V>=Vo [2oS( v,) -2 +vosin(v,,]. (22)
2vo

where <...> is used to denote a normalized average over the electrons.
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The average energy lost by an electron is " mc2 (<v> - v0 ) /4 T N [Ref. 5]

where the electrons are assumed initially distributed uniformly in phase and mono-

energetic with phase velocity v,. The energy loss by all electrons , in the beam

of volume element 6V is therefore

ymc2 (<v> -v) (23)

4nN

where p. is the electron density. For low-gain the electrons are assumed to

remain well inside the optical mode, and do not disturb the shape of the optical

beam. The electron beam energy in volume element 6V is deposited into the

optical field during the FEL interaction. The radiation energy density that enters

the optical field from the electron beam is governed by

E2 8V 
(24)

where optical = radiation energy density
E = magnitude of circularly polarized radiation field
6V = volume element of optical beam.

The gain is then found by taking the ratio of (23) and (24), and equating the

energy loss by the electron beam to the energy gained by the light wave. The

gain is

G P - -p~ymc2 a 2 )py mc( a,G2 "vt3 2 c o s ( v o r) 2 + vo sin( ov ) (25)

P POP E2N 2V0

Substituting (22) into the above expression, and defining a dimensionless current

j = 8N(enKL) 2 p, l y3 mc 2 the gain that occurs in the FEL is
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Gj[ 2 - 2cos( vo ) -vr sin(V)] (26)
3

V
0

This equation holds when gain is low. The gain spectrum is a plot of the final gain

at r =1 verses the initial phase velocity v,. The vo-axis can be considered as a

function of the optical wavelength centered at the resonant wavelength expressed

by (17). The gain spectrum is anti-symmetric in vo for j,,1 with a peak gain of

G = 0.135j (27)

at v0=2.6. At resonance, there is no gain, while at values of v<0 there is net

absorption of the optical power. A change in resonance of A v zlr can shift the

interaction from amplification to absorption. Shown in Figure 5 is the gain

spectrum for moderate current, j=5, in weak optical fields ao=1. The gain for this

design is 80%. The gain spectrum is no longer anti-symmetric in v. but shifted to

the left where some gain at resonance now occurs. Since this dimensionless

current corresponds to a moderate electron beam current, deviations of the

spectrum from the low current case are expected.

Two corrections to (26) include (i) a coupling factor that incorporates Bessel

functions that depend on K and the undulator polarization and (ii) a filling factor

that includes the optical mode distortion effects [Ref. 5]. Both these factors are

significant in FEL gain calculations and will be explored in Chapter IV.

C. DERIVATION OF THE OPTICAL WAVE EQUATION

We can derive a wave equation to describe the FEL's optical evolution. The

assumptions, approximations and calculations found in [Ref. 2-6] are reviewed.
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**** Compact FEL Gain Curve ****

j=5 a0=1 N=49

Gain 0.8

0.0

-0.8
-12 V0  12

Figure 5. Weak-Field Gain Spectrum G(vG) For Moderate Current

The purpose of the review is to provide the reader a basic understanding of the

evolution of light in the presence of relativistic electrons that travel through a

magnetic field set up by an undulator.

As relativistic electrons initially enter the undulator field, approximately one

photon will be emitted for each electron that passes through the undulator. This

is spontaneous emission. The total field from many electrons rapidly establishes

a classical light wave. The number of electrons contained within the optical volume

element 6V depends on the electron density, and the ratio of the electron beam

size to the optical mode size. As further amplification of the light wave occurs,

approximately 106 photons per pass are emitted into the optical volume element

causing the light to become a coherent emission source. This electromagnetic

radiation provides the driving force on the oscillating electrons as they travel

through the undulator. Using Maxwell's equations, the evolution of the amplitude

and phase of the coherent optical wave can be coupled to the single-particle
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Lorentz force equations. The electric field E(zt) changes in position and time due

to the amplification process and the waveform passing over the electrons. The

electric component of the optical field (3) can be approximately expressed by a

radiation vector potential A:

E(t) ( sin 4, cos4r, 0) (28)
k

where E(t) = electric field vector,
k = 2t/k.,
4! = kz - wt + 4p(t) and 47(t) = optical phase.

The amplitude of the electric field is assumed to be independent of the position z.

It is also assumed that the electrons remain well inside the optical mode waist, and

therefore, no transverse dimension considerations are included in the radiation

vector potential.

By making use of the Lorentz gauge, the inhomogeneous wave equation

[Ref. 10] becomes

[2 2 -  47 ]J2  (29)

where [2 _( 1 /c2 ) Y/&2] = wave operator,

V2=(o2/aX2, a2 1ay2, o-/aC3)

.I = transverse election current density source term.

This expression describes a plane wave traveling in the z-direction when the

amplitude and phase are held fix. When the amplitude and phase slowly evolve

over an optical wavelength, first and second derivatives in the spatial and time

domains, and terms containing two derivatives can be negle ted, since the
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radiation bandwidth is emitted in a narrow spectrum. Substituting (28) into (29)

and using this approximation, the left side of the wave equation can be simplified

to [Ref. 5]

f'2 &2 lX(r)- 2 a (cos*, -sin4 r O) -2L (sin4cosO) "  (30)0).

C V2  c at C &

Equations that are slowly-varying can be constructed by projecting the wave

equation on two unit vectors in the following manner:

2 _ 1 C)2  ( . -41 ( . (31)

{t21 a2j 4'(t) 2_ j) 2  (32)

where

il = (cos*, -sin*, 0) (33a)

2 = (sin*, cos*, 0). (33b)

The fast factors tos (j)" and 'sin (*)" each oscillate once as an electron near

resonance passes through an undulator period.

The substitution of (30) for [ V 2 
- ( 1 / C 2 ) 2 1t 2 ,j( t) and (33a) for , are

made into the left side of (31). A similar procedure is performed with (33b) for E2

and the left side of (32). Performing the vector dot product operation on the left

side, Maxwell's equations become:
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1 8E -27 t). (34)
ct c

E _ (35)

The source term i (t) describes the electron current density as a function

of the time the electrons interact with the optical wave and the longitudinal position

of the electron in the undulator. The single particle current density is determined

by [Ref. 10]:

(36)
J,,=-ec 8 (3) (Y - F) (6

where J. = transverse electron current density source term of the
ith electron

e = charge of electron
c = speed of light
P = transverse electron velocity
60 ) (if - F) = delta-function that describes the electron's location at

position X in 3-dimensional space
F, = trajectory of the ith electron.

Since Maxwell's equations are driven by the total beam current, the sum of all the

electrons particle currents must be determined. Equation (36) is modified

accordingly:

]. _J -ecE 0,"3 (.f - ) (37)
1 t

where the sum is over all i electrons located in a small volume element 6V.

The electron's transverse motion is almost entirely determined by the

undulator field, so (8) can accurately be used to express in the total beam current.
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Using (8), (36), (33a) and (33b), the right side of Maxwell's first-order scaler

equation, (34), is transformed into

-2-c .(t) . -= -2teK 8(3 ) (.f - F,)[cos( ko= ) cos* - sin( koz ) sin*1.
C Y i

Using the trigonometric identity cos(koz w) = cos(kz) cosw - sin(k,) sin *,the

final form of the transverse electron current density projected along 78& is

j-(t)41=CK 3(i - F ) cos( k, +, 4. (38)
Y

Following similar manipulations with (8), the final 'orm of the transverse electron

current density projected along 2 is

7( t ) "42 =- ceKIE (3) (,- rF,) sin( kz + Sr). (39)

Y t

Substituting the electron current density equations (38) and (39) into Maxwell's two

first-order scaler equations, (34) and (35), we acquire:

1 2 8(3)(y - F,) cos(koz * S) (40)
c at y

E 89 _-2 _, (3)(.f - F,) sin(koz - * ) (41)
c Y y

In order to proceed further, the volume element where the FEL interaction occurs

must be defined. This differential volume, 6V, determines how the appropriate

approximations of the electric field's slowly-varying time and space coordinates are

made, and also provides a means to sample all the electrons that are contained

in this space. The electron and optical beams are both considered cylindrical
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where natural diffraction of the light is ignored, and electrons are well inside the

optical mode waist. See Figure 6.

Eldtron Do"

V 1 t Optical Fleld Structure (40

Figure 6. Differential Volume Element In the FEL
Simplification to the light and electron beams are made so the electron beam
remains well Inside the optical beam where both are taken to be cylindrical
In shape. Also, shown are several optical wavelengths inside the optical field
contained In 8V.

The volume element is chosen so that it contains several wavelengths of light

in which the optical field structure (E, ,) remains essentially constant. An averaging

process of (40) over this volume element for the optical field amplitude and

electron particle positions must be performed to remove 6-functions. By averaging

over an element 6V that is much smaller than the size of the optical field envelope,

all the field sites will have essentially the same slopes and time derivatives. This

results in the left side of (40) remaining unchanged. The right side also must be

averaged over many optical wavelengths where all the 6-functions that exist within

the volume element 8V must be summed. Since the average is over many optical

wavelengths, a large number of electrons are either bunched or randomly

positioned. The electron phase C will provide a means of locating electrons within

0 to 2% in phase space. The function cos ( kz *(0)) = cos [(ko + k) zI at t=0 and
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p(z,t)=O can be approximated as cos(kz,) for k,,ko. Recalling, for any t>O and

k,,k, , * follows the electron position in a section of the beam one optical

wavelength long, AC kAz. Therefore, the position of the electron within an optical

wavelength is simply given by C=kz.

The sum 8(3)(y - F,) cos(koz + 4r) electrons in 6V can be replaced by an

average over sampled electrons within the optical wavelength

"8(3) (.-F)<cos(+4)> where kz+ -+ and <cos(C-4)> is the

averaged sum. The sum of the 6-functions for all electrons in the volume element

6V can be converted to an electron particle density, p., that will properly weight the

average sum of the sampled electrons <cos (C + p)> and correctly determine

how much the optical wave is driven by all electrons in 6V. The form of the field

envelope is assumed to depend on both z and t. Combining these assumptions

and approximations (40) can be written as

dE 2ntceK P, <COS(( + (42a)
dt y

The evolution of the optical phase is determined by performing a similar weighted

average over sample electrons in the microscopic volume element:

(Y - f,)sin(kz -) _ p,<sin(C + V)>

where now (41) is written as
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Ed9p = - 2 nceK p,<sin(c - (P)> (42b)

dt y

These two non-linear equations are coupled through the electron pendulum

equation, and describe the long-term evolution of the amplitude and phase of the

laser field. Using the dimensionless parameters

al= 41tNeKLE CtJ=8N(eiKL) 2  Pe and
y 2mc 2  L y 3mc2

defining a =a I ele, (42a) is put in complex form:

a -j<e-'C>. Optical Wave Equation
da _

The utility of this equation in expressing gain can be immediately seen by

considering values of C that either maximize or minimize the real part of <e-'>.

Examining this equation, we can see that bunching of the beam at C = n will drive

the amplitude of the optical wave, and lead to gain. Growth of the wave also

occurs with increased dimensionless current j and depends on the electron

distribution <...>. Electrons bunched at n provide maximum gain where as

electrons bunched at n/2 provide minimum gain.

The dimensionless currentj provides the coupling between the electron beam

and the light wave. The response of the optical wave to bunching in the beam is

also determined from j. By comparing the magnitudes of the dimensionless

quantities to certain threshold values, a simple identification of FEL gain regimes

can be made (Ref. 5]. When jl, the FEL gain is low with non-exponential growth.

When j>1, the FEL gain is high with exponential growth. For values of j not within
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either of these regimes, the gain does not have either of these distictive features.

The proposed compact FEL design has dimesionless current j=5. Therefore, the

correct theoretical approach to analyzing gain for this device must be carefully

chosen. A discussion of the methods used to evaluate gain is addressed in

Chapter IV.

D. STRONG OPTICAL FIELDS AND SATURATION EFFECTS

The Maxwell-Lorentz theory of the FEL combines Maxwell's wave equation

for the optical wave and the relativistic Lorentz force equation for the electrons to

describe laser dynamics in both strong and weak optical fields. The extension of

this theory into the strong field regime allows the use of the optical wave and

electron pendulum equations to accurately study the electron phase-space

evolution and gain in the FEL [Ref. 5]. This extension is allowed because both

equations assume there are no significant changes in the electron energy ym&.

This implies the electron energy is not followed self-consistently. Strong optical

fields can be reached after many passes in a low-gain oscillator, or at the end of

a high-gain amplifier. When the optical field in either the low or high-gain system

becomes sufficiently strong, the initially uniform electron beam becomes over-

bunched and complicates the electron phase distribution A , v ). Overbunching

is the process where electrons become overpopulated at the end of the laser and

do not efficiently drive the optical wave. This over-bunching can destroy the
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coherent bunching responsible for the initial gain, and indicate the onset of

saturation and the reduction of gain.

Strong fields begin when a . Recalling the electron pendulum equation,
00

= = Ial cos(cos( 4))), We see that a bunch formed at the proper phase

for gain, C-p =, would soon evolve by AC = - 1a! =-n to Lhe phase for

absorption C , p = 0. The electron phase velocity is proportional to the rate of

energy transferred from the electron bunch and determines the amount of power

transferred into the optical wave. Similarly when C+4)=-i, the electron phase

velocity v and rate of energy transferred from the bunch is positive implying that

energy is being extracted from the optical wave decreasing the gain. The strong

fields cause the electron bunch to move too far along the phase-axis in phase-

space and cause the electron phase to shift to a relative phase for absorption.

The electrons become trapped in closed phase-space orbits as some electrons

can overtake, or fall behind other electrons in the beam.

An estimate of how much energy can be lost by the electron bunch in strong

fields can be made by looking at the phase-space diagram. Figure 7 shows the

FEL phase-space evolution for weak fields and low current where the pendulum

and optical equations are solved numerically in an optical field a0=2 and j=1.

Electron phase velocity v verses electron phase C describes the evolution of

electrons within an optical wavelength. Shown in the figure are 20 electrons; each

electron's initial conditions determine the evolution of its velocity v (C) and position

C(t). Each electron is therefore constrained to follow a particular path in phase-
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space. The final phase-space positions of the electrons are drawn in (C,v). The

separatrix path separates open orbits from close orbits. The height of the closed-

orbit region is determined by the optical field strength and ultimately determines

the laser gain process. The two plots to the right in the figure represent the

evolution of the gain G and optical phase p from the beginning to the end of the

undulator.

e FFL Phase Space Evolution t

.=1 o=2 Vo=0 V=49

5 Gain 0.01

la 0

0.

-51 1 ltji

-n/2 3/2 0 3.

Figure 7. Phase Space Diagram for Weak Fields with Low Current

The electrons are initially positioned such that work is done on them; they

gain energy and move ahead of the average flow at the top of the phase-space

picture. Other electrons lose energy to the radiation field, and move back behind

the average flow to cause bunching. At c :1, there is no gain or phase shift from
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the uniform spread electron beam, but as bunching develops the gain and optical

field increase. The maximum energy of the electron bunch occurs when electrons

are positioned at the highest point on the separatix-axis, and similarly, the

minimum energy occurs when the electrons are located at the lowest point of the

v-axis. The total energy that the electron bunch can transfer to the optical wave

is therefc e estimated by the height of the separatix path, 41a 1 ,2 from peak-to-

peak.

Figure 8 shows the compact FEL phase-space evolution for weak fields with

moderate current where the pendulum and optical equations are solved

numerically in an optical field ao=2 and j=5. The electrons start outside the closed

orbits and evolve into a bunch at Czn. The optical amplitude is driven by this

bunch and drives the gain by a factor of 100 higher than the previous case j= 1.

WvVen la I= at saturation, the :hange in the phase velocity is

=,- 2 and corresponds to a change in the bunch's

energy by A v = 4TNA y / y = 2n. A change in phase velocity by 2n can cause the

electron bunch to shift from peak gain to peak absorption.

Figure 9 shows the compact FEL phase-space evolution for strong field

a0 =20, with moderate current j=5. Due to the strong fields and the rapid rate of

bunching near the beginning of the undulator, the gain and phase begin to grow

rapidly. At about z=1/2, the optimum relative phase C+-tzn, for gain occurs

resulting in the best spatial overlapping of the electrons. However absorption

occurs as the bunch evolves further past this optimum phase to C+i=0. The gain
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**FEL Phase Space Evolution**
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Figure 8. Phase-Space Diagram for Weak Fields with Moderate Current.

is seen to first peak, and then decrease as the overbunched electron beam drives

the optical wave and continues to evolve so that energy flows back into the

electron beam. The final gain, G=10%, is significantly reduced from the

theoretically possible, G =0.135j, in weak optical fields.

As anticipated, the FEL interaction in strong optical fields demonstrates

significantly different characteristics upon saturation. The gain spectrum, G(vo),

changes shape in the presence of strong fields. As discussed in the gain

mechanism section, the gain spectrum in weak fields and low-current is anti-

symmetric about the resonance wavelength with a peak gain G=O. 135j, at phase

velocity v,=2.6 and has a gain bandwidth of roughly Avo=7r. Similarly the peak
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**FEL Phase Space Evolution**
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Figure 9. Phase-Space Diagram for Strong Fields with Moderate Current

absorption occurs at the phase velocity v,=-2.6 with a value of G=-O. 135/. For

j=5, the gain spectrum is shifted slightly to the left away from resonance. As the

initial field strength increases, the peak gain decreases and the wavelength at

which peak gain occurs also increases away from resonance. The gain spectrum

width becomes broader and distorts as the FEL saturates. The gain is further

reduced as the bunched electrons move out of resonance and lose energy to the

optical field. These effects are shown in Figure 10 where the gain spectrum G(vo)

for moderate current j=5 and initial field strength ao=O is increased to 30. The

phase velocity that gives peak gain increases away from resonance as the field
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strength a. increases. The gain describing the interaction after each pass in the

FEL oscillator causes the optical field to grow a little stronger as can be seen

along the ao-axis. As the power grows over many passes, typically several

hundred passes are required to evolve from the weak-field to the strong-field

regime near saturation, the optical wavelength is observed to shift to longer

wavelengths corresponding to a larger initial phase velocity.

in (1+G)

j=5 N=49

0

ao
0

1630

Figure 10. The Gain Spectrum G (v,) for Moderate Current with
Increasing Optical Field Strength ao.

E. PRODUCTION OF HIGHER FREQUENCY HARMONICS IN FELs

The frequency of radiation emitted by a relativistic electron traveling through

a linearly-polarized undulator is given by nc, = ca.(1 +( )/ 2y2. Here, n=1,3,5,..,
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is known as the harmonic number. The fundamental is defined as the frequency

produced when n=1 [Ref. 11]. We address an overview of the harmonic

mechanism to provide an intuitive understanding of their origin so specific compact

designs that operate on harmonics can be explored in Chapter IV. Using

numerical methods. Chapter IV will also examine the advantages of using

harmonics in compact FELs. Here, dynamics of relativistic electrons in the

presence of light, stimulated emission, are generalized to describe higher

harmonics of the optical field [Ref. 6,121. Harmonics are produced by extra

oscillations of the electron that occur at each undulator period. The energy

transferred between the electron beam and light, given in (10), is extended to

include this motion.

Harmonics result from a coupling between electrons and light due to an

alteration of the energy transfer mechanism. In addition to the transverse

sinusoidal motion of electron trajectories in the linearly-polarized undulator, a small

periodic longitudinal motion exist that cause spontaneous emission and gain in

odd multiples of the fundamental, nw=nkc. The harmonic coupling is due to the

time electrons spend in periodic, longitudinal motion while transferring energy to

the optical wave. A weighted coupling between electrons and light is expressed

by Bessel functions which modify the undulator parameter K. The modified

undulator parameter provides a convenient method of incorporating harmonics in

the optical wave equation, electron pendulum equation and gain analysis. An
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outline of how this modified undulator parameter is derived and incorporated into

(10) is given below.

The ideal undulator field is given by

B, = B(0, sin (kz), 0). (43)

The components of the Lorentz force equations including this new undulator field

are

dtyl =e -eBd m-e (1 p )= x ( -IBsin(kz), 0, 0,sin(koz) (44)

dy = 0 - y =constant. (45)

The x and y-velocities are found by integrating the respective component equation:

F2 Koskz ( 646)
Y

Py = constant + 6 D,,o (47)

where K= eBA. / 2nmc 2 and 6 P, and 6 03,, are constants of integration. Using

= 1 - - - 1 ,(46) and (47), and assuming perfectly injected electrons with

6 , = 6 yo= 0, the electron z motion is given by
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Z , = 1 - y-2[(1 K2 )  K'2cos(2koz)].8

At z=O, the injected z velocity is

z 2  z,.o -  ,(0) 1 -2z I +2K 2)  (49)

-K (50)
Y

for perfect injection.

Now (48) can be written

p- =p ) +(K )2  K)2 cos(2kz) (51)

and perturbation expansion in (K/Y) 2 is now possible. Defining

I, ( t) = 5, - A 3, ( t), the z motion to order (KIY)2 is derived from integrating z to

lowest-order to give:

To lowest order in (K/y)2, [ 2,= /c ,= 1 - 1 / '2( 1 +/ e) ] so that the electron

position can be written as the expansion z = z, + p,ct .... The integrated z

motion, becomes

z ( t0 -= ( Zo + ",Ct - Ii-.- sin( ( 2koZ°I 20J,wot) M 5)

The first two terms express the slowly evolving motion of the electron along the

undulator-axis. The last term expresses the fast, periodic, longitudinal motion on
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the optical wavelength scale and causes higher harmonics. This oscillatory motion

occurs once per undulator period. Variations of the fundamental electric field

observed by the electron as it travels through a undu!atcr period causes the

nonuniform axial motion. The fast and slow motions can now be expressed as

z (t) = ct -' (K2 sin( 2wot) wherezo= 0and 5z =1. (54)

Defining = K ( /2(1 I(K),(54) can be expressed as

z (t) = 5, ct- sin (2uo)00. (55)

Substitution of (55) into (10) and recalling = (k ko )z - (it is the electron phase,

the electron energy equation is written explicitly in terms of fast and slow variables:

eKE [cos(nC p -( n - 1 )wot- nsin(2ot))
0 0 (56)

- cos( nC - p - ( n - 1 )cot - n~sin(2.ot)]

Using the generating function to expand sinusoidal terms in cylindrical Bessel

functions and averaging over one undulator period, (56) is written as

:t= e~t,( E ) EL cs(n
2ymc-

where

O (E) = K( -1 ),-1, 2 [[ J ,, 2(n ) - J, r 1 ; 2(nE)] for n= 1,3,5...

The product of the undulator constant and the Bessel functions provides a

convenient mathematical notation to compare FEL operation in any selected
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harmonic. By using the theory already developed in the preceding sections the

generation of harmonics can be expressed by simply replacing K - t ( ,).
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Ill. CONCEPT OF A COMPACT FEL

To increase the accessibility of FEL's to a broad range of users a reduction

in size and complexity of FEL systems must be pursed. The largest component

of a FEL system is usually the electron accelerator due to the large electron

energy required. The relatively large electron beam energy along with high

current requires significant radiation shielding for personnel safety and therefore

increasing the overall weight of the FEL system [Ref. 8]. To reduce these

requirements, FELs that operate on harmonics have been proposed to allow

using lower energy electron beam. This effect can be examined by considering

a fixed undulator design, and referring to the resonance condition given in [Ref.

12], n, = A,( 1 + K2) / 2y 2, where the harmonic number n is included. The

undulator design depends on the period A and undulator parameter K and

therefore assumed to be constant. For a desired optical wavelength, the only

variables in the resonance equation are the Lorentz factor y and harmonic number

n. By increasing n, we see -y can be reduced accordingly, provided A, K and I

remain fixed. Since y is proportional to the electron beam energy, using

harmonics can provide a viable method of designing compact FELs which require

lower energy.
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A. DEVELOPMENT OF THE PHOTO-CATHODE INJECTOR

Preliminary design studies have been conducted at Los Alomos National

Laboratory (LANL) on an infrared compact RF-linac driven FEL [Ref. 8] that relies

upon two technological advances:

" a very bright electron beam from a photo-cathode injector, and a

* pulsed-wired technique for short-period high-field undulators.

The photo-cathode injector, designed by Sheffield and Fraser at LANL, is a

compact device used to generate the FEL's electron beam [Ref. 13,14]. The

device uses a light-activated, photo-emissive electron source in order to provide

excellent control of the electron distributions. Electron distribution functions

determine the quality of the electron beam, and play a significant role in the small-

signal gain that is available from a given undulator. Beam quality can be

described by two effects, emittance and energy spread [Ref. 5]. Both effects

reduce FEL performance by degrading the bunching process described earlier.

The transverse emittance is used to describe the imperfect FEL injection of

electrons off-axis in either position or angle. Since the transverse coordinates of

the electrons in the FEL are (xy), we must consider electron injection off-axis to

include both dimensions. Figure 11, however, shows the electron's injection only

in the y-direction. A similar schematic holds for the x-direction.

An imperfectly injected electron has a decrease in phase velocity, and

random spreads in ( y0 , 0o) and (xo, Eo,). These effects will begin to decrease
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x

size of electron beam
at the entrance to undulator

Figure 11. Schematic of Injection of Imperfect Electrons Into Undulator.
Injection of Imperfect off-axis Into the undulator due to spread of position y.
and angle e,0.

the FEL's ability to bunch electrons causing a decrease in gain. Assuming the

motion of the electrons in the two x and y transverse directions is independent, a

transverse phase-space plot can be constructed. Taking the electron distribution

to be a product of uncorrelated Gaussians in angular spreads and positions, the

transverse emittance, e. and e, are defined by the corresponding phase-space

areas. See Figure 12.

ey= 2nyoe,. e, = 2nx~e,. (57)

An ellipse drawn around the electron particle distribution defines an area in

y-O phase space that characterizes the transverse emittance. Similar results hold

in x-O phase space.
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Figure 12. Electron Particle Phase-Space Distribution.
An ellipse drawn around the electron particle distribution defines an area in
y-OY phase space that characterizes the transverse emittance. A Gaussian
distribution of positions occur In y with an uncorrelated Gaussian
distribution of angles In %,. Similar results hold In x-. phase space.

The emittance growth of the beam is reduc I by using the photo-injector

design, because the electron bunch produced frLm the cathode is rapidly

accelerated to relativistic energies in a single cavity, thereby reducing significantly

the electron beam transport at low energies [Ref. 13,14]. The desired low

emittance is also required for the electron beam to propagate through the small

gap in the undulator, and the optical mode in the resonator cavity. Brightness, a

property of the electron beam, is proportional to the current and inversely

proportional to the beam quality [Ref. 15]. This implies emittance must be reduced

in order to obtain an intense, bright electron beam.
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B. TECHNOLOGICAL ADVANCES IN MICRO-UNDULATOR DESIGNS

Warren and Feldman [Ref. 16] discuss the design and construction of iron-

free electromagnets driven by pulsed high-currents. The micro-undulator can

generate the high magnetic fields needed to reduce the period, and still maintain

optical gain at reasonable values. These devices have periods of less than one

centimeter and can be used to generate light at short wavelengths with electron

beams of only moderate energy. While reducing the period, the designer requires

the undulator parameter, K, to be less than one in order to extract the maximum

gain from the FEL. Pulsed currents in copper-like conductors, that produce

current densities in excess of about 103 A/cm2, can be utilized to accomplish this

requirement. Limits of this technology involve undulator construction errors,

material stresses and electron beam alignment issues [Ref. 17]. Compared to

other undulator technologies, this design has the greatest potential to reach short

FEL wavelengths with reduced electron beam energy.

The harmonic mechanism in FELs, discussed in the last chapter, is the result

of the fast, periodic axial motion of the electrons. The effects of harmonics can be

m.,inipulated by designing micro-undulators that operate with periods which are

multiples of the fundamental period. Re-writing the resonance condition for

harmonics as X = ).( 1 + K2)/2 y 2n, it can be shown harmonics of the undulator's

period can be utilized to design micro-undulators. These designs would have

fewer periods and still have the requirements mentioned earlier.
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The top schematic of Figure 13 illustrates an FEL operating on the

fundamental, n=1, for a fixed undulator and fixed electron beam energy. In the

fundamental, the undulator has a period X0 , undulator parameter K, ard initial

electron velocity corresponding to a Lorentz factor, y. The fundamental optical

wavelength, X, is found from the harmonic resonance condition with n=1. The

middle schematic illustrates the same undulator design and electron beam energy,

but the third harmonic, n=3, is used. The resulting wavelength is X/3 or one third

the fundamental wavelength satisfying the harmonic resonance condition with ' =3.

This is the conventional use of harmonics to reduce the optical wavelength. A new

method of utilizing harmonics proposed by R. Warren, is shown at the bottom.

Using the same electron beam energy and undulator parameter K, the optical

wavelength, I, is acquired from the harmonic resonance condition when the

undulator period is increased to three times the fundamental's undulator

wavelength 3 X,. The advantage of this design is that the micro-undulator FEL can

reach short optical wavelengths with a reasonable undulator period and a low

energy electron beam. The next chapter discusses in detail three specific micro-

undulator designs that utilize harmonics in this fashion.
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Figure 13. Schematics of Compact FEL Operating on Optical and
Undulator Harmonic-s.
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IV. EVALUATION OF COMPACT FEL OPERATION

A. HIGHER HARMONIC GENERATION IN COMPACT FELs

There is currently interest in lasing on higher harmonics of the fundamental

frequency in order to reach optical wavelengths in the range of 0.4 to 0.5 microns

with an electron beam energy of about 20 Mev. The use of harmonics at short

wavelengths allows a realistic undulator parameter, since the undulator's length

is shorter, the number of periods is less and longer periods would be used. The

consequence would be a micro-undulator design that would be easier to

fabricate. Shorter undulators would also minimize the penalty from emittance and

energy spread inherent in all realistic electron beams [Ref. 18]. For a tixed optical

wavelength, X., and an undulator design using higher harmonics, the energy of

the electron beam, ymc 2, can be reduced thereby lowering the radiation shielding

requirements for personnel. Operation over a wider range of wavelengths, and the

increase in optical power at saturation provide additional benefits of using higher

harmonics in compact FELs [Ref. 12]. The gain that can be achieved using

various harmonics depends on electron beam properties, beam quality factors,

and the specific micro-undulator design chosen. To evaluate gain on harmonics

for new FEL design systems, it is necessary to utilize computer codes that

represent the mathematical formulation of the FEL equations discussed in Chapter

II.
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B. FEL SIMULATION METHODS

Various numerical simulation methods, essential to relating the three major

technologies of optics, relativistic electron beams and undulator magnets have

been developed to analyze and design RF-linac-driven FELs [Ref. 19]. Numerical

calculations using five methods that model FEL laser physics with different levels

of sophistication and mathematical formalism are conducted on three micro-

undulator designs. The designs are explored to demonstrate the use of higher

harmonics in order to reach optical wavelengths with lower electron beam energy.

These preliminary compact FEL designs were proposed by R. Warren at LANL.

The design method is based on Dattoli's parameterized gain formula [Ref. 20] and

approximate solutions for the magnetic fields of single and double-current carrying

helical windings [Ref. 21]. The intent of the design code is to accurately model

gain characteristics, and provide a basis within which micro-undulator parameters

can be developed in order to optimize compact FEL operation. The assumptions,

approximations, regions of validity and definitions of important parameters for the

methods used in the analysis will be discussed through this chapter.

C. COMPACT FEL DESIGN PARAMETERS

The electron beam current and energy spread, and the optical wavelength

are the same for all three micro-undulator designs evaluated. The electron beam

has current 1=400 A, and Lorentz factor y= 4 0 corresponding to an energy of

about 20 MeV. The beam emittance is varied from e=k/4 to e= 7 ., while the
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Gaussian energy spread varies from 0% to 0.8%. The optical wavelength is .=0.4

microns with the optimum Rayleigh range zo = L / /f2 where L is the length of the

undulator. Two of the three undulators are designed to be operated on higher

harmonics with undulator periods in the range of ;.0=0.3 to 0.5 cm. The values

of the harmonic number, number of periods, period, and undulator parameter are

given for the three micro-undulators in Table I.

TABLE I.

FUNDAMENTAL THIRD HARMONIC NINTH HARMONIC

n 1 3 9

N 413 49 19

.o(cm) .013 0.33 0.54

K 0.018 0.408 0.540

D. GAIN DEGRADATION DUE TO BEAM QUALITY AND THE FILUNG

FACTOR

An analysis of beam quality and the filling factor 9- is necessary for a

discussion of the FEL gain evaluation. Emittance and energy spread effects that

describe beam quality, introduced in Chapter III, are discussed in greater detail to

show important FEL design limits. The filling factor Jr, defined as "the ratio of the

electron beam size ir 2'' to the "optical mode size Trwo'' is used to define a limit

on the electron beam area. [Ref. 5]
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Gain in the FEL depends on details of the phase velocity distribution where

the ability to bunch electrons is diminished in a different way for each shape [Ref.

22,23]. The exact distribution function of the electrons transverse motion depends

on the construction and operation of the accelerator and usually is not known

exactly. The distribution for initial electron energies perfectly injected into the

undulator is represented by the normal distribution function [Ref. 23)

fG(v) = exp[ -(v - vO)12aG] for all v (58)

where fG(v) = Gaussian distribution
v = phase velocity
v = peak phase velocity
oG = 47TNA y/y is the standard deviation of v away from the peak

phase velocity v,.

A Gaussian distribution of angles about the z-axis is given by the exponential

distribution function [Ref. 23]

fe(V) exp[-(vo-v)/ 08] for v<v. (59)

Ge

f(v) =0 for v>vo

where 08 = 4nNy2 ( Ae/1 + K)
AO = standard deviation of angular disstribution
Vo = phase velocity for electrons entering on-axis.

It is important to note that for any angular-spread of phase velocity, the

longitudinal velocities of these electrons are decreased. The phase velocity is

skewed only in the negative direction indicating that the electron's energy can only

be decreased regardless of the initial angle relative to the z-axis.
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The decrease in phase velocity for an imperfectly injected electron is given

by [Ref. 5].

AV=2tN ( lk 1'(60)

where Av = change in electron's phase velocity, and
eyo = electron's initial injection angle.

Any change in the electron's average z-velocity causes a change in the electron's

phase velocity as given by the above expression. When the electrons are injected

off-axis in either position or angle, they experience a field strength that is stronger

than the field strength on the central-axis. This effect causes the electrons to be

focused back toward the center line, and execute a number of betatron

oscillations, N, = NKI y, in the transverse x-y plane. The betatron oscillations result

from transverse excursions of electrons that have a constant of motion defined by

a harmonic potential [Ref. 5]. In the situation where the electron beam is guided

into this betatron motion, it is desirable to match the angular and position spreads

so that the beam does not focus or expand as it travels along the z-axis. A smooth

propagation of the electron beam with minimum spread in the phase velocities is

achieved by requiring that the angular and position spreads be matched [Ref. 5]:

Kkoro = yey (61)

where ey is now a spread in angles.

The spread of electron phases accumulated over the undulator length in a

matched beam is given by [Ref. 5]
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A 4 NK2 2 (62)

If we require the phase spread not exceed an optical wavelength at the end of the

undulator, Az/AI 51 the limit for re is found.

Relating Av to AzIX at the end of the undulator we first find AC=Av at t=1,

since v = !. Recalling aC=kJz, the phase spread can be written as Av=kAz.

Eliminating Az from Az/.. -1 and Av =kiz, and using (62) we find the phase spread

limit can be written as

4TN K2kO r. (63)
I+ K2  k .

Using the resonance condition, N, = NKIy and L = NX0, the limit for re is found

to be

Tr. -,, nL" (64)
47t 2NO2

This resulting limit on the electron beam area is to insure that the phase spread

does not degrade beam quality.

An important limit of the electron beam radius constrains the electron beam

to be inside the optical mode r* s wo. The fraction of the beam outside the mode

cannot participate in the gain process. The expansion of a coherent beam with a

Gaussian intensity profile in the fundamental mode is given by [Ref. 24]
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w2 (z) =w2 1 + ((z-LI2) (65)

where w(z) describes the beam contour at position z, and wo the waist spot size

at z=O.

The Rayleigh range, defined as z, = T W / ., is the distance where the optical

transverse mode expands to twice the size compared to waist size in the undulator

[Ref. 5]. See Figure 14. The Rayleigh range is optimized by minimizing the optical

mode volume around the electron beam. The optical mode volume is calculated

by integrating the beam intensity profile along the entire length of the undulator

[5],

V=o2r w 1 + -dz=XL Zo+._ ()"0

where I = T w / Zo.

The two limiting cases, zo 0 and z0 -o, each result in an optical mode

volume that tends to infinity. In the first case, a small waist is pinched in the middle

of the optical mode, and rapidly expands due to diffraction. An infinite volume

means that light at the ends of the undulator would be far from the electron beam

and would not be significantly amplified. In the second case, a plane wave would

develop where all of the optical mode is large. The optical mode would be far

away from the electron beam at the end of the undulator and at the waist, as well.

Both these cases are unsuitable for any physical solution therefore their must be

a optical mode volume minimum between 0 and
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Figure 14. Schematic for Diffraction of Ught Wave in Undulator.
Schematic for a Gaussian beam In lowest-order expanding due to diffraction
spreading as it propagates away from the waist region located at center of
the undulator.

We find the value of zo that make the volume of the optical mode a minimum

[Ref. 5]. Setting the derivative of (66) to 0

V I L -0 (67)

the optimum Rayleigh range is found to be z. - L / VI2. By making the Rayleigh

range equal to about a third to a fourth the undulator, the minimum optical mode

volume is found. This characteristic volume provides the optical mode for

maximum gain.

For the optimum Rayleigh range, r s w, gives a limit to the electron beam

wne&
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L_ (68)

When this condition is satisfied, the small-signal gain is independent of the electron

beam size, and depends only on the current contained within the optical mode.

Emittance, the product of the rms values of the angular and radial position

spreads, provides the fundamental limit to beam size and determine a

corresponding spread in the longitudinal electron phases. Comparing the

restrictions (62) and (66) shows that for N, _ 1 , the only effect of emittance occurs

when the electron beam is larger than the optical mode, or simply F - 1. This

restriction simplifies the analysis of any FEL.

E. METHODS OF ANALYSIS

1. Three-Dimensional Simulation Codes

a. FELEX

FELEX, further abbreviated to FEX, numerically calculates three

dimensional particle motion and optical diffraction effects [Ref. 25]. The computer

code is based upon the Monte Carlo technique that simulates three dimensional

FEL physics by following orbits of simulation electrons; 2,560 are used in our

analysis to determine the optical field interaction. Numerical solutions to the FEL

equations (5a), (5b), and (6) are found using three major algorithms [Ref. 25], (i)

a set of ordinary differential equations describing the electron motion, (ii) a

parabolic partial differential equation governing the optical field, and (iii) the
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connection between the optical field and the electron motion through a source

term that is a function of the electron current density. The currents from the set

of electron equations provide the source term in Maxwell's equations and connect

the electron motion to the optical field [Ref. 25]. Averaging the relativistic Lorentz

force equation (1) over the spatial period of the undulator, the numerical solution

is acquired that incorporate in the dynamics (i) finite emittance, (ii) energy spread,

and (iii) linear undulator focussing of the electron beam in the undulator field. The

program was set up for curved-faced pole undulators where equal focusing in the

x and y-directions is obtained. This effect causes the electron beam to remain

round as it travels through the undulator instead of being focused only in one

direction, and thereby, developing an elliptical shape. In short undulators, which

are considered here, gain calculations are not substantially affected by the fact that

the simulation code uses curved-faced poles instead of flat-faced poles. These are

single wavefront calculations that do not consider the pulse nature of both the

electron and optical beam. Optical gain and refractive effects are "self-consistently"

calculated as the light interacts with electrons inside the undulator. A finite width

of the optical wavefront near the center of the optical pulse length is modeled. The

transverse profile of the electric field is set equal to a normal Gaussian mode

characterized by a wavelength, focal position, and a Rayleigh range. The optical

field at the exit of the undulator is propagated through the optical resonator to the

entrance of the undulator where the next electron pulse interacts to simulate an
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FEL oscillator. The evolution of the optical field is found by solving the paraxial

wave equation [Ref. 25,26], since FEX models the optical components of the

resonator by thin lens. The paraxial wave equation, derived from the formulation

for the optical wave equation discussed in Chapter II, has an inhomogeneous

driving term that is a result of the stimulated emission of the electron beam when

placed in the optical field. An extension of the FEX code was made at LANL to

incorporate a model of coherent spontaneous emission of harmonics in the FEL

oscillator operating at high power at the fundamental wavelength with a plane

polarized undulator. An additional modification allows calculations of undulator

field errors due to manufacturing fiaws in magnetic material or imperfect alignment

during construction [Ref. 26].

b. Wavefront simulation

A wavefront simulation, WFS, numerically solves the 3-D parabolic

wave equation, together with the pendulum equation [Ref. 5]. This method

includes most of the FEL effects incorporated into FEX except that a

monoenergetic electron beam is assumed. When the gain is sufficiently high, the

electron beam can distort the optical mode into a combination of resonator modes

[Ref. 5]. This code accounts for distortion by self-consistently calculating the

optical field for high gain in 3-D without using the filling factor. Harmonic coupling

and strong fields are included in the code.
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2. One-Dimensional Simulation Code

Numerical solutions of the wave and pendulum equations, SIM, for both

strong and weak fields are found with approximately 1000 simulation electrons.

This analysis includes the filling factor, harmonic coupling and electron beam

degradation effects. The evaluation of the FEL interaction is described by the

dimensionless current j which determines the response of the optical wave to

bunching in the beam [Ref. 5].

3. Analytical Methods

a. Integral Equation

Combining the electron pendulum and optical wave equations in

weak fields, an integral equation, INT, governs the evolution of the optical field

[Ref. 5,22]. This development allows the evaluation of gain degradation from a

Gaussian electron beam distribution in both the high and low-gain regimes where

the individual electron phase dependence is eliminated. Coupling to higher

harmonics is also incorporated in the integral equation which is solved numerically

on a small computer. The transverse optical mode remains fixed during this FEL

interaction. However, fixed optical mode coupling is incorporated by including the

filling factor.

b. Small-Signal Gain Formula

A modified small-signal gaim formula, DAT, which incorporates

harmonics and the broading of the electron beam due to emittance and energy
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spread was also used in developing the gain plots. Dattoli's parametrized gain

formula [Ref. 20] is given in cgs units by

G 19 x 10 N2 n2 .  K i.(A) j., ].2 1 (69)
1 . K v (1 1+3) (1 nP)1)2(1 - (ni,) 2 )(1 -1.7(n .) 2 )

where G = single-pass gain,
N = number of undulator periods,
n = harmonic number,
K = rms undulator parameter,
I(A) = peak current in amperes,
y = Lorentz factor,
J0 ,1 =Besselfunction= [J(n-1)/2(n&) -J(n+l)/2(n&)]where

& =1/2 K2 /1 +K2,
PC = coupling parameter,
Px, = broading parameter due to emittance,
p = broading parameter due to energy spread.

The parameterization of electron beam characteristics contained in (69) has been

obtained by a polyncmial expansion, and best fit with numerical data [Ref. 27,28.

The coupling parameter p.c is inversely proportional to the rms longitudinal bunch

length of the electron pulse and does not significantly contribute to degrading the

gain since p,<1 for the cases considered. For an ideal linear undulator the

magnetic field is constant along the x-direction. By ideal we mean undulator

magnets that extend to infinity in the x-direction. In this case, electrons are not

focused, but continue their motion away from the undulator-axis. For the ideal

linear undulator the horizontal emittance can therefore be neglected, since it does

not contribute to gain degradation. Dattoli's parametized gain formula was

modified by D. Warren to include these assumptions [private communication]. The

modified small-signal gain formula (DAT) is written as
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G=19.10-4N 2n 2  K 2 I(A [Jo1
2  1 1K~~ ~ 2 /Nl 2 1 "1.7(ES) 2  (7 0 )

1 t-2 N p€j-

where ES = 2.8 n N (Ay/y)
ey = rms emittance in y-direction
No = number of Betatron oscillations.

This is peak gain at the optimum resonance condition.

A gain plot can be generated to illustrate the effects of emittance

and energy spread for a given undulator and electron beam. This analysis, valid

only in weak fields, is a one-dimensional theory where all transverse effects have

been neglected. However, the size of the electron beam relative to the optical

mode size is incorporated by including the filling factor. The five methods used are

summarized below in Table II.

TABLE II.

FEX WFS ,-.,M INT DAT

high gain yes yes yes yes no

mode distortion yes yes no no no

energy spread yes no yes yes yes

strong fields yes yes yes no no

harmonics yes yes yes yes yes

The high gain theories are non-linear in current j and are

determined self-consistently. A theory with mode distortion describes a self-

consistent calculation of the transverse optical wavefront without the use of the

filling factor. Modeling the electron beam to include energy spread effects is
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incorporated in all of the methods except WFS. The strong-field theories, FEX,

WFS, and SIM are able to calculate gain in strong nonlinear fields. All methods of

theoretical analysis include harmonic coupling using Bessel functions to express

the reduced coupling. The gain for each theory is calculated with the optimum

resonance condition.

These five methods each have their own merit in predicating gain.

The FEX code incorporates as much physics as is feasible, but requires a CRAY

computer and is not easy to use. The SIM, INT and 3-D WFS methods require

only a personal computer, but do not include the full range effects in FEX. On the

other hand, the parameterized gain formula, DAT, is valid only for small-signal gain

in weak fields, but requires only a calculator for evaluation.

F. DISCUSSION OF THE PLOTS

Plots of gain for the three micro-undulators are shown in Figures 15 through

20. In Figure 15, gain is plotted against the rms energy spread for the undulator

using the fundamental. The five methods of analysis, FEX, WFS, SIM, INT and

DAT are shown. Only a single WFS data point is shown, indicated by an X, for a

monoenergetic electron beam. The emittance is e= X/4, and the filling factor found

to be 7 =0.25. As expected, the gain decreases for all four methods, FEX, SIM,

INT and DAT when the energy spread is increased to 0.3%. The characteristic

energy spread, shown on the horizontal axis by an arrow, indicates where gain

should be seriously degraded by the energy spread effect because the electron
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Figure 15. Gain Curve for Micro-undulator Design Operating on the
Fundamental where Energy Spread is Varied.

phase is roughly equal to x. FEX and WFS have nearly equal gain values,

because they represent a complete self-consistent FEL oscillator solution where

optical distortion of the optical wavefront is taken into account. The SIM and INT

curves are below FEX for the entire energy spread range, because they do not

include mode distortion. The DAT theory does not include mode distortion or self-

consistent high gain, and therefore lies below all other theories.
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Gain vs optical power for the fundamental undulator with nearly perfect

electron beam quality, energy spread of 0% and e=X14, for FEX, SIM, and WFS

are shown in Figure 16. The gain for the three methods starts to degrade at

approximately the same optical power. The characteristic power where the

beginning of saturation should occur is indicated by a star. The FEX and WFS

curves are above the SIM curves, because mode distortion increases coupling at

all powers. The 3-D codes agree throughout the entire power range except when

the optical field becomes very strong. There, an exact calculation of gain from any

FEL model becomes difficult.

Figure 17 displays gain vs energy spread for the second undulator design

which operates on the third harmonic with design parameters given in Table I. The

gain curve is similar to the previous design except that the filling factor is Yr =0.1.

Similar trends in the gain degradation and saturation are seen in Figures 15 and

16, because of the attributes of the theoretical models used. However, this design,

operates on the third harmonic with only N=49 periods compared to N=413

periods for the fundamental design. The sensitivity of gain to energy spread is

reduced significantly as shown in Figures 15 and 16. The gain vs optical power

plot, shown in Figure 18, illustrates the additional advantage of using harmonics

since the characteristic power for saturation 6x1 0 W/cm 2, is approximately a factor

of 15 higher than in the fundamental design. As seen in Figure 18 some
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Figure 16. Gain Curve for Micro-undulator Design Operating on the
Fundamental where Optical Power Is Varied.
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Figure 17. Gain Curve for Micro-undulator Design Operating an the Third
Harmonic where Energy Spread Is Varied.
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Figure 18. Gain Curve for Micro-undutator Design Operating on the Third
Harmonic where Optical Power Is Varied.



deviations between FEX and WFS occur at very high powers where calculations

are difficult.

Extending the comparison to the third undulator operating in the ninth

harmonic, Figure 19 shows the same general features as in the previous gain vs

energy spread plots. Only N=19 periods are required here compared to N=49

periods for the third harmonic design and N=413 in the fundamental design. The

gain vs optical power plot, Figure 20, illustrates the same shape for the three

methods as the third harmonic design. However, the characteristic power for

saturation 7x109 W/cm2 is approximately a factor of 20 higher than found in the

fundamental design.
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Figure 19. Gain Curve for Micro-undulator Design Operating on the Ninth
Harmonic where Energy Spread Is Varied.
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Figure 20. Gain Curve tar Micro-undulator Design Operating on the Ninth
Harmonic where Optical Power is Varied.
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V. CONCLUSIONS

Preliminary designs of Compact Free Electron Lasers are analyzed. This

work contributes to the operational advancement of Compact FELs by illustrating

the advantages of using harmonics where size and complexity would be

substantially reduced. The device would be available to a wider range of users

with many potential applications in scientific and modern technology. Three micro-

undulator designs are explored to reach an optical wavelength of 0.4 microns with

an electron beam of 20 Mev. The use of harmonics at short wavelengths improves

the undulator design with longer periods that would be easier to fabricate. The

use of shorter undulators minimizes the penalty from emittance and energy spread

inherent in all electron beams. For fixed optical wavelength, and an undulator

using ha monics, the electron beam energy can be reduced thereby lowering the

radiation shielding requirements for personnel. Operation over a wider range of

wavelengths and the increase in optical power available at saturation provide

additional benefits of using harmonics. The value of using harmonics to improve

undulator designs are evident by performance calculations conducted by various

computer codes, and should be pursed to extend this new scientific tool for future

applications.
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